What should I do if I feel claustrophobic or start to panic?

The Sighing Method
This is a relaxing method for releasing tension in the muscles of your upper body. It can help to reduce your feelings of anxiety or panic. Moderately inhale through your nose (not deeply) and then very slowly exhale through your nose or mouth.

Specials masks are available for patients who may be nervous or anxious. Ask your therapist about these options.

Easy Breathing Method
Maintain an easy breathing pattern, stay relaxed and comfortable. Pay attention to your breathing and how your body moves when you breathe. Concentrate on your inhale, then pause for a second and release a natural exhale, followed by a pause. Listen to your breathing and don’t allow your mind to wander. This will allow you to gain control over your thoughts and keep from panicking.

How was the thermoplastic mask introduced into radiation therapy?

Early positioning and immobilization aids consisted of sandbags, foam sponges, rolled linen and masking tape. Patients were positioned on the treatment table with these aids, then anatomical landmarks and body planes were used to establish a reproducible position. However, these aids did not meet the technical accuracy for all treatment techniques. Therefore, investigation of new methods and materials started improving patient positioning.

Sandbags and rolled linen were replaced with contoured styrofoam head and neck rests. Varied sizes were evaluated and a common set was established and manufactured in hard foam covered with rubber. However, there was still room for improvement.

Thermoplastic was discovered from occupational therapy and integrated into radiation therapy for head and neck contoured masks attached to standard bases with use of the headrests. Positioning lasers added to the improved accuracy in treatment positioning reproducibility.
You and your physician have chosen radiation therapy as part of your cancer treatment. There are a variety of tools used by a radiation therapist to assist in your treatment. One of these tools, a thermoplastic mask, will be explained in greater detail here. Be sure to contact your radiation therapist or nurse if you have any questions.

What is a thermoplastic mask?
Thermoplastic is a plastic material, polymer, that becomes pliable or moldable above a specific temperature and solidifies upon cooling. Thermoplastic masks offer a reliable method for accurate positioning and immobilization during radiation treatments.

The mask is first placed in warm water to make it soft and pliable. Then it is pulled over the patient and is molded to the contours of the patient's anatomy. As the mask cools, a rigid replication of the patient's anatomy is created.

Why is it necessary to use a thermoplastic mask?
To achieve the most successful radiation therapy treatment, it is important to have the radiation beam hit the tumor every time, while sparing as many healthy cells around the tumor as possible. To achieve this, the patient needs to be in the same position every time he or she is treated. A thermoplastic mask aids in immobilizing the patient during treatment as well as repositioning the patient from treatment to treatment. The mask can also be marked so the patient can be aligned with the room lasers, which may eliminate the need to mark on the patient's skin.

How will the mask feel?
When the mask is being molded it will feel warm and moist. The mask should not be hot and will not burn you. It will feel similar to a spa treatment. After the mask is pulled it will start to cool. Cooling spray or a cool damp cloth may be used to help speed up the cooling process. You will be able to feel the mask start to harden. It is important the mask stays on until completely cooled to reduce the shrinking of the mask. You will be able to breathe easily during this entire process. After the mask is set it should feel close to your skin but should not pinch or hurt.

1 The mask is first heated in a water bath and then dried.  
2 Then the warm, pliable mask is pulled over the patient.  
3 The mask is then formed to the patient's contours and left on the patient until it has completely cooled.